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ABSTRACT 

We generalize the classical formulas of integral geometry, by getting 
integral geometric formulas for the intersection of a fixed compact hyper- 
surface of hyperbolic space and a moving totally umbilical hypersurface. 
In particular we compute the mean value of the volume, the total mean 
curvatures and the Euler characteristic of these intersections when the 
totally umbilical hypersurface moves over all the intersecting positions. 
Analogous formulas are given for totally umbilical hypersurfaces 
contained in totally geodesic planes of 1~. 

1. I n t r o d u c t i o n  

Consider the space £ r  of r-dimensional affine subspaces (planes) in n-dimen- 

sional euclidean space. Let dLr  be a measure in i:r invariant under the action 

of rigid motions. A classical result in integral geometry states tha t  the integral 

of the Euler characteristic of the intersections of r-dimensional planes with a 

compact  domain Q with smooth boundary  S = OQ is 

~ ,  x(Lr n O)dLr = c ~ ~r_l (X)dx 

where c is a constant,  ai stands for the i- th mean curvature of S and dx is the 

volume element of S. If  Q is convex, this gives the measure of planes intersecting 

it. 
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In space forms, analogous formulas were obtained in [San76]. More precisely, 

let Er be the space of r-dimensional totally geodesic submanifolds of M n (k), the 

n-dimensional simply connected manifold of curvature k. Consider a measure 

dLr in Er invariant under the action of isometries of Mn(k). For a compact 

domain Q C Sn(k) with smooth boundary S = OQ, 

[ x(Lr n Q)dL,~ = cvol(Q) + ~ cik ['/2]-i [ a2~(x)dx 
J£ 

2 i ( r  J S 

where the constants depend only on the dimensions and vol stands for the 

volume. 

To go one step further in generalizing these formulas, it is natural to substitute 

totally geodesic hypersurfaces by totally umbilic hypersurfaces. In euclidean and 

spherical spaces, totally umbilic submanifolds are spheres so one can reduce to 

a particular case of kinematic formulas (which measure sets of congruent figures 

intersecting a given one). 

Nevertheless, in hyperbolic geometry there are many open totally umbilic hy- 

persurfaces apart from geodesic hyperplanes. It is well known (cf. [doCar]) 

that totally umbilical hypersurfaces have constant normal curvature A and they 

can be classified into 4 types: geodesic spheres (A < 1), horospheres (A = 1), 
equidistants (0 < A < 1), and totally geodesic hyperplanes (A = 0). Geodesic  
spheres  are sets of points at given distance from a center. Horospheres  are 

obtained by making the center of a sphere go to infinity. Equidis tants  are 

connected components of tubes about totally geodesic hyperplanes. 

This paper generalizes the described integral geometric formulas to totally 

umbilical hypersurfaces of hyperbolic space. The role of r-dimensional totally 
geodesic submanifolds will be played by umbilical hypersurfaces of (r + 1)- 

dimensional totally geodesic submanifolds. For spheres and horospheres, these 

formulas were already obtained by E. Gallego, A. M. Naveira, and the author 

in [GNS]. Here we find new results for the lower values of the normal curvature 

and for higher codimensions. 

2. Definit ions and invariant  m e a s u r e s  

The n-dimensional hyperbolic space is any complete simply connected rieman- 
nian manifold with constant curvature -1.  We will use the hyperboloid model; 

let (~n+l, (,)) be the Minkowski space with 

(x,y) = -xoYo + xlyl + "'" + XnYn. 
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Hyperbolic space is the upper connected component of the two-sheet hyper- 

boloid defined by {, ), namely 

= {x • l~n+ll(x,x) = - 1 ,  xo > 0}, 

with the riemannian metric defined by the restriction of {, ). The Levi-Civita 

connection V in IHI n is the orthogonal projection, with respect to {, ), onto TIE n 

of the usual connection in R n+l . As a consequence of this, geodesics in this 

model appear as intersections with I ~  of 2-dimensional linear subspaces. 

Let G be the group of isometries of I~ .  It is known that G is the group of 

linear endomorphisms of I~ n+l preserving {, } and l~ .  That is, 

a = {9 • a t ( ~  + 1, a)lg~Jg = J, 9o 0 > 0} 

where J is a diagonal matrix with - 1  in the first position and 1 in the rest. We 

will think about the elements g E G as orthonormal frames; the first column go 

is a point of I~  and the rest (gl , . . .  ,g,~) form an orthonormal basis of TgoI~. 

For each i, consider gi: G -~ I~ n+l mapping each matrix to its i-th column. The 

differential of this map is a 1-form with values in R n+l , and can be expressed 

as follows: 

(1) dg i  o + w~gl  + "" + w n = --Wi go i gn  

for the invariant 1-forms 

~ ( x )  = (g~,x~), x • r~a 

where X j denotes the j- th column of X. These differential forms verify 

~h ~o, j 
= w i = - w j ,  O < h , i , j < _ n .  

Taking exterior derivative in (1) gives the structure equations 

° A w J +  E w h A w J h ,  O < i < j < n .  (2) d w  j = - w  i _ _ 

h # i , j  

Recall that a point in a hypersurface is called umbilical  when the normal 

curvatures in all directions of this point are equal. A hypersurface such that 

all the points are umbilical is called to ta l ly  umbilical. In constant curvature 

ambients, the normal curvatures of totally umbilical hypersurfaces are the same 

at all the points (cf. [doCar]). 
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Definition 2.1: For A _> O, a complete totally umbilical hypersurface with nor- 

mal curvature A will be called a A-geodesic hyperp lane  of IH[ n . Denote £~ n--1 

the set of all A-geodesic hyperplanes of IHP. 

This definition includes, for A = 1, horospheres, and for A = 0, geodesic 

hyperplanes. The case A > 1 consists of spheres of radius arctanh(1/A). For 

A < 1, the tube at distance arctanh A around a geodesic hyperplane has two 

connected components, each being a A-geodesic hyperplane. It is not difficult 

to see that in the hyperboloid model, A-geodesic hyperplanes are intersections 

of ~ with affine hyperplanes of the type 

{x • R I(x,y) = -A}  

where (y, y) = 1. 

Now we introduce a higher codimension analog of A-geodesic hyperplanes. 

Since a geodesic r-plane Lr C ]H~ is isometric to E r, it makes sense to talk 

about A-geodesic hyperplanes of Lr. 

Definition 2.2: A A-geodesic hyperplane of some geodesic (r + 1)-plane in I[~ 

will be called a A-geodesic r-plane. Define Lr ~ to be the set of all such A- 

geodesic r-planes. | 

Remark: Using the Gauss equation one immediately gets that the A-geodesic 

r-planes are riemannian manifolds of constant sectional curvature A 2 - 1 (for 

r > 1). Since they are simply connected, the Cartan theorem assures that they 

are isometric to spheres (A > 1), euclidean space (A = 1) or hyperbolic spaces 

(0 < A < 1). 

Let eo,. . .  ,e~ be the canonical reference of ~n+l and consider the (r + 1)- 

dimensional geodesic plane Lr+l = (eo, . . . ,  er+l) A ]HI n. Fix L~ the A-geodesic 

r-plane through eo, contained in Lr+l and such that er+l is normal at eo and 

points towards the convexity of L~. Let Hr be the subgroup of isometries leaving 

L~ invariant. Now, £~ is identified with the homogeneous space G/Hr. This 

defines a canonical projection 7rr: G ~ L~. The following proposition allows us 

to find the (unique up to a constant factor) invariant measure in a homogeneous 

space. 

PROPOSITION 2.1: Let G /H  be a homogeneous space of dimension m. Let 

r / = ~ l  A . . . A ~  m 
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where 8 i are left invariant 1-forms defining the foliation gH (g 6 G). This form 

~1 is closed if and only i f  there exists a measure a in G / H  which is invariant by 

the action of G. In this case ~ = 7r* a for the canonical projection 7r: G -+ G / H. 

PROPOSITION 2.2: The space £~r admits a measure dL ~r invariant with respect 

to isometries which is defined by 

( ~;(dL;) = A (~;+'-  ~'wo ~) A A w ,, A wo ~. 
h=l l< i<r+l< j<_n  k=r+l 

Proof: Structure equations (2) show that the differential form is closed. It 

J and Wo k are null on H. Take a curve remains to prove that w~ - Aw h, w i 

g(t) = (go(t) , . . .  ,gn(t)) in H. Note gi and gi the position and tangent vectors 

of gi(t) at t = 0. Clearly, go is tangent to Lr ~ so 

w0~(9) = w°(9) = <g~,90> = 0. 

Considering L~ as a hypersurface of Lr+l ~ ]H[ r, gr+l(t) is the unit normal 

vector and 

w~ +1(9) = <gh, 9~+1> = <g~, V~ogr+l> = <g~,,~9o> 

since all the directions on L~ are principal with normal curvature A. Thus, 
(w~ +1 - Awoh)(g) is null because 

Wo~(g) o 
= w~(g) = <gh,9o>, 

Finally, since g j  6 (er+2 . . . .  , en>, 

w~(9)=(gi ,g j}  = 0  f o r l < i < r + l < j _ < n .  | 

Remark: Note that 
7 "  

A (~;+~ - ~Wo ~) ^ w~ +' 
h = l  

d ~ corresponds to the measure L[r+l]~ of A-geodesic hyperplanes of an (r + 1)- 

dimensional geodesic plane Lr+l. On the other hand, ( )n  
A w; ,~ A d 

l<_i<r+l<j<_n k--r+2 

corresponds to the measure of (r + 1)-dimensional geodesic planes in E n (cf. 

[San76]). Therefore, abusing the notation, we will write 

(3) dL~ = dL[~+q~ A dL~+1. 
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We have paid no attention to the signs because we are not dealing with differ- 

ential forms but with measures. 

Given polar coordinates (p, u) E R x S ~-1, one can consider the geodesic "y 

going by the origin with tangent u, and the A-geodesic hyperplane such that 

~/(p) is the exterior normal at the intersection. With these coordinates it can 

be seen that 

dL~ = (cosh p - A sinh p) " -  1 dpdu 

where du stands for the volume element of S n-1. 

3. Volume of intersections with A-geodesic planes 

The next proposition generalizes to A-geodesic planes the formula for the mean 

volume of intersection with geodesic planes ([San76], p. 245). Here and in the 

following, Oi will denote the volume of the unit/-dimensional sphere. 

PROPOSITION 3.1: Let S q be a q-dimensional compact submanifold in ~n, 
piecewise C 1, possibly with boundary. Then 

£ volq_l(L~_ 1 N Sq)dL~n_l - OnOq-1 . volq(S) 
~_, Oq 

where voli denotes the i-dimensional volume. 

Proof: Consider the manifold 

E(S) L x £x S] p ~-1 = { (  ~-I,P) E ~ - l x  E L  x NS}. 

For almost all (L~n_l,p), i.e. out of a zero measure subset of E(S), the intersec- 

tion L~_ 1 n S is a C 1 submanifold in a neighborhood of p. Denote dXa_l the 

volume element of this submanifold. Now, 

fz:~_l volq_l(L~n_l ~ S)dL~ =/E(s)dXq-1 A dL~ 

where dL~ denotes the volume element on gx~-i and also its pull-back to E(S). 

Consider now 

G(S) = {g E Glgo ~ S gl , . . .  ,gq-1 E TgoS gq+l,... ,gn-lA-TgoS} 

and the projection 7r: G(S) -+ E(S) which maps the reference g to the A-geodesic 

hyperplane through go, tangent to gl, . . .  ,gn-1 and with the convexity in the 
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side of g~. This way, 

q--1 n--1 

/f*(dxq-i A dL~_l) :  A w°h Aw~ A A ( ~ -  A~.,~) 
h : l  i=1 

q - 1  q - 1  n - 1  

= A ^ ^ A ^ A - 
h : l  i : 1  i:q 

Given g 6 G(S), take y 6 G(S) such that 

-go :" go,' ' '  ,'gq--1 : gq--1 and -~q E TgoS. 

For every v E TgG(S), 

Wio(V)=<gi,dgo(v)):O, q< i <n, 

~ ( v ) = ( ~ { , d g o ) = O ,  q < i .  

Therefore, 

n n 

W~ : E(-gi,gn)'~iO ---- (-gq,gn)-~ q a n d  w q = E(-gi,gq)~io : (-gq,gq)'~q. 
i=q i--q 

Since we are working with measures, no attention must be paid to the sign 

changes and we can write 

q--1 n--1 

(4) ¢r*(dxq_l A dL~n_J = (-gq,gn) A w0h A~g A A W~ = [sin0[dSn-lA dxq 
h : l  i : l  

where d$ '~-1 is the volume element in S n-1 corresponding to the normal vector 

of L~n_l in x, dxq corresponds to the volume element of S and ~ is the angle 
between S and L~_ 1 in x. Integrating both sides of (4) we get 

/E dXq-lAdL~n-1 : / G  7r*dxq l A d L ~ n - l : ~  [sin(~[d~n-l" f dxq" 
(s) (s) ~-~ Js 

It is not difficult to compute that 

[ sin 0[d~ n-1 OnOq-1 
n--1 -- Oq m 

Consider the case of A-geodesic planes with higher codimension. 
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PROPOSITION 
piecewise C 1 , possibly with boundary. Then if r + q >_ n, 

Proof: 

3.2: Let S q be a q-dimensional compact submanifold in H n, 

~ volr+q_n(L~Sq)dL~ = O n ' ' ' O n - r - - l O r + q  - n  

0~... OoOq 

Using (3) and the last proposition, 

• volq (S ) .  

~r  vOlr+q-n(i~ N S)d/r ~ = ~,'+1 ~r+l]r VOlr+q-n(/r~ N S)di~r+l]rdir+ 1 

= Or+lOr+q-n ~ volr+l+q-n(S ~ Lr+l)dLr+l .  
Or+l+q-n ~+1 

The formula for the integral of the volume of intersections with geodesic planes 

(cf. [San76], p. 245) gives 

volr+l+q_n(S C1 Lr+l)dLr+ 1 On".  On--r--lOr+l+q--n ~+~ -- -0~+ ~ :: :--~O~ O---~q volq(S). 

Note that  for A = 0, these results coincide with those in ([San76]) except for the 

constant On-r-1. This is coherent with the fact that,  even for A = 0, the space 

£~ is a fiber bundle of base £r  and fiber S n-r-1.  

For r + q = n, we have an analog of the Cauchy-Crofton formula 

~ #(L~ N Sq)dn~r = On'" On--r+lOn--r--1 . volq(S). 
Or... 01 

In particular, the integral of the number of intersection points of A-geodesic 

hyperplanes with a curve of length L is 4L/(On_x... 02). When A = 1, this 

coincides with a result by Santal6 for the cases n = 2, 3 (cf. [San67], [San68]) 

and by Gallego, Naveira and the author for general n (cf. [GNS]). 

4. To ta l  m e a n  c u r v a t u r e s  of  i n t e r sec t ions  w i t h  A-geodesic p lanes  

Apart from the volume, the most natural integral geometric invariants associ- 

ated to hypersurfaces are total mean curvatures 

Mi(S) := fs ai(x)dx 

where dx is the volume element of S and ai is the i-th mean curvature of S 

at x. Here we deduce reproductive formulas for these invariants analogous to 

those given for the volume. 
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Let L = Ln_ 1 be a A-geodesic hyperplane intersecting transversally a hy- 

persurface S in x. This defines, at least locally, a submanifold C = L n S 

of codimension 2. The second fundamental forms of these submanifolds are 

bilinear symmetric forms given by 

hL: (TxL) × (TzL) --+ (TxL) ±, 

hs: (T~S) × (TxS) -~ (TxS) ±, 

he: (TxC) × (TxC) --+ (TxC) ±, 

V x Y  = v L y  + hL(X,Y); 

V x Y  = v ~ Y  + hs(X, Y); 
v x Y  = v ~ Y  + he(x,  Y). 

Here V M denotes the connection on the submanifold M. One can also consider 

the second fundamental form h L of C as a submanifold of L. Clearly, 

(5) hc(X, Y) = hL(x ,  Y) + hn(X, Y) = hs(X,  Y) + hs(X, Y). 

Let Ns and NL be the inner unit normal vectors of S and L in a point 

x E C = S N L .  ForX, Y E T x C o n e h a s  

hs(X ,Y)  = #s (X ,Y)  . Ns, hL(X,Y)  = #L(X,Y)  . NL, 

where #s and #L are real-valued bilinear forms on TxS and TxL, respectively. 

On the other hand, for some real-valued bilinear form #L on TxC, 

h i ( x ,  Y) = ~ ( x ,  Y)Nc 

where Nc e TxL is the inner unit normal vector of C. 

PROPOSITION 4.1: With the above notations, 

~ S  ----- COS ~PL n t- sin ~#L 

where 0 is the angle between NL and Ns. 

Proof: Using (5), 

#s (X ,Y)  = (hs (Z ,Y) ,Ns )  = (hc(X ,Y) ,Ns)  

= #~(X ,Y ) (Nc ,Ns )  + #L(X,Y)(NL,Ns) ,  | 

Since ].t L - ~  Aid we can express #L in terms of the restriction of #s to TzC, 

(6) # ~ _  #L Aid 
sin fl tan fl" 

To avoid confusion, fix the following notation. Given a (real-valued) symmet- 

ric bilinear form # in a space of dimension r, we denote 

{k~. . .  k~, } 
~j(~) - (~) 
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where {kil " -k i j  } is the j- th elementary symmetric polynomial of the eigen- 
values k l , . . . ,  kr of #. Recall that 

?, 

det(# + rid) = E ( k i l ,  . .kijIt r-j. 
5=0 

With this notation the j-th mean curvature aS of the hypersurface S is aj (#s). 

PROPOSITION 4.2: The mean curvatures ak(# L) of C as a hypersurface of L 
are given by 

k {n-l-2~ 
,n_k_2, (~i -2) (_l)k_Z COSk-t 0 

ak(#g) = E (nk2) sin k 0 
Ak-l al(#Sp) 

l=0 

where #sp is the restriction of#s  to P = T~C. 

Proof'. 

sin 8 

Taking determinants 

÷ 2o)Id = ÷ ( t s i n 0 -   cos0)Id) 

n-2 

j=o J 

= det(#c + tld) 

det(#Sp + (t sin 0 - ,~ cos O)Id) 
sin n-20 

_ 1 ,~-2 ( n - 2  an i e(#Sp)(tsinO 
sin~-20i__~o_ i ) - -  Ac°sO)i 

n--2 i 
1 i ~  ° ( n - 2 ) a n _ i _ 2 ( # S p ) ~  (~)(_l)i_y)d_Jcosi_JOsinJOt j 

- sin n-20 i 

~ - 2 1 ( ~ ( ; ) ( n - 2 )  ) 
= ~ sin ~-j-~ o i (-1)~-~;~ ~-~ cos ~-j o~,~_~_2(# s)  tJ. I 

j=0 i=j 

The following lemma is a generalization of the fact that, for surfaces in N3, 
the mean curvature in a point of a surface is the mean value of the normal 
curvatures in all the directions by this point. 
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LEMMA 4.1: Let S be a hypersurface of some n-dimensional riemannian mani- 
fold and let # be the second fundamental form of S in a point x. For every 
i-dimensional linear subspace L of T~S, denote #[L the restriction of # to L. 
Then, for j <_ i < n - 1, 

I v  aj(#ii)dL = vol(G(n - 1,i))aj(#). 
(T~S#) 

Note that ,  if another hypersurface N intersects S orthogonally in x in such a 

way that  TxN N TxS = L, then P[L is the second fundamental form of S N L in 

x as a hypersurface of N. This is immediate by Proposition 4.1. 

Proof." For the case j = i this is a well-known result (cf. [LaSh, Teu]). For 

j < i, we can reduce to the preceding case as follows: 

fG(%s,i) aJ(#iL )dL 

= fG(T~S,~) ( v°l(G(i'J) )-l /G(~(snv~),j) aJ("[')dl) dL 

"~ vol(e(i,j) )-i /G(T~S,j)) /G(l±,i-j) (TJ("ll)didl 

= v o l ( G ( i , j ) ) - l v o l ( G ( n - j - l , i - j ) )  f a aj(#l~)dl 
(T~S,j)) 

= vol(G(i,j)) -1 vol(G(n - j - 1, i - j ) )  vol(G(n - t ,  j))aj (#). | 

Given a hypersurface S C ]H~, for almost every A-geodesic hyperplane L~n_l, 

the intersection L~_ 1 n S is a smooth hypersurface of Ln_ 1. In this case, it 

makes sense to consider Mi(L~n_I F1 S), the total mean curvatures of L~n_I A S 

as a hypersurface of L~_ 1 . 

PROPOSITION 4.3: Let S be a hypersurface of~g n, 

[j /z] 
/L ~ S)dL~n-1 c~'jA21Mj-21(S)' Mj(Ln_ 1 A = Z 

~-1 /----0 

where 

Proof'. 

(n--jq-2l--2~ [ n--2~ 
n k n--j--2 ]k j -21! On-2On-j+2lO0 

Cl,j "~ n- 2 ( j ) On-j-1021 

Denote C = L,~_ 1 F1 S. Using (4) 

~ _ l / c ( r C d x d i ~ n - l = f s ~ , , _ l  sinOffCdsn-ldx" 
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By Proposition 4.2, if #Sp is the restriction of #s to P = TxC, 

( n j 2 )  fs._lsinOaCdgn-1 

= ~i=0 ( :  - ; - 2 2 )  (n:2)(-l)J-iAJ-i fs~-i sinJ---gsin9 cos,_ ~. 9ai(pSp)dSn_l. 

Taking 'polar coordinates' in S ~-1, the latter integrals are 

fs fo'sinO 1 • cos 3-*gai(#sP) sin n-2 9d0dP 
~-2 sin 3 9 

/o = sin n-j-1 0 COS j - i  0d0 ai(#Sp)dP. 
n - - 2  

Using Lemma 4.1 gives the sought formula. The constants are easily obtained. 
| 

COROLLARY 4.1: For j <_ r - 1, 
[j/2l 

fL MJ (Lxr AS)dL~r = Z c~,J, r)~21Mj-21(S) 
x l=O 

where 
(r--j-J-21--1~ r--1 

r--j--1 ](j--21) O n - 2 " ' ' O n - r - l O n - j - b 2 1  
C~,j,r : r--1 ( j ) Or-:'''OlOr-j02l 

Remark: For j = 0 we recover the case q = n - 1 of Proposition 3.2. 

Proof: Formula (3) gives 

f~ Mj(L~ n S)dL~ = fL,.+, fL~r+,l~ Mj(L~ n S)dL~dL~+I 

which, by the last proposition, is equal to 

[j/2] 

,,+1 /=0 cl'j A j--211, 

Finally, the reproducibility formulas of Mi for intersections with geodesic planes 
that appear in ([San76], p. 248) give 

£ M j - 2 1 ( S  A L r + l ) d L r + l  - -  O n - 2 " ' "  On--r--lOn-j-t-2l M j - 2 1 ( S ) .  | 
r+l  Or-1  " " " O00r-j-b2l-kl  
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5. M e a s u r e  o f  A - g e o d e s i c  p l a n e s  i n t e r s e c t i n g  a d o m a i n  

In the following we express the integral of the Euler characteristic of the inter- 

section of A-geodesic planes with a domain of ~ in terms of the total mean 

curvatures of its boundary. 

THEOREM 1 : Let Q c IE n be a compact domain with smooth boundary. For r 
even 

fL ~ x - 1)~/20~-1 "'" On-r-1 x(QN Lr)dL r = (A 2 • V(Q) 
O r  . .  .O1  A r 

r /2 r/2 n 

For r odd 

~E A x( Q N Lr )dL r = 

Proo£" For every L~ intersecting Q, the Gauss-Bonnet  formula in space forms 

of sectional curvature (A 2 - 1) states (cf. [San76]), for r even, 

-~)~(Q n L~) = (A 2 - 1)~/2V(Q n L~) 

r/2 ( r - l ) O r  (A2_I)(~_2OI2M2i_I(OQAL~); 
+ Z  2 i - 1  0 2 i - - 1 0 r - - 2 i  i=1 

and for r odd, 

(~-1)/2 
X(QNL~r)= Z ( r - i )  Or 

2i 02/0r-2/-1 /=0 
(A 2 - 1)(r-2/-1)/2M2/(OQ N L~r). 

Integrating with respect to Lr ~, in the even case 

Or f~ x(Q ~ ~ fE V(Q~Lr)dL~ - -  ~ L r)dLr = (A 2 - 1)~/2 ~ 
2 ~ L~ 

+ Z  r -  1 Or (A 2 _ 1)(r_2/)/2 M2/_I(OQNLr)dLr, 
i----1 2i-  1 0 2 i - - l O r - - 2 i  J f X  r 
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and by Corollary 4.1 and Proposition 3.2, 

Or fL x(Q N ~ ~ 0~-1 . . .  On-r-i 
- -  Lr )dLr  = (A2 - 1)r/2 Or-1 O0 • V(Q) 2 ~ . . .  

i - - 1  

r/2 ( r - l )  Or (A2_l)(r_2i)/2(Zc~,2i_l,rA21M2i_21_l(oO)) 
+ Z  2 i - 1  02i-lOr--2i i=1 " / - - - - 0  " 

and reordering the sums we get the sought formula. In the odd case one proceeds 

analogously. | 

For A = 1 and r = n - 1 we get the integral of the Euler characteristic of 

intersections with horospheres (as in [San67], [San68] and [GNS]). 

Remark: These results are of special interest in the case of A-convex domains 

(cf. [GaRe]). A domain Q is called A-convex if for every A-geodesic curve L~, 

the intersection L1 ~ n Q is connected. In this case L~ N Q is contractible for any 

Lr ~, so the last formulas give the measure of A-geodesic r-planes that  intersect 

Q. For instance, the measure of A-planes in ~ intersecting a A-convex domain 

is 

fL d i~  = 2MI(OQ) - (1 - A2)V(Q). 
~ nQ:~O 

[doCar] 

[GaRe] 

[GNS] 

[LaSh] 

[San67] 

[San68] 

[San76] 

[T ul 
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