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ABSTRACT

We generalize the classical formulas of integral geometry, by getting
integral geometric formulas for the intersection of a fixed compact hyper-
surface of hyperbolic space and a moving totally umbilical hypersurface.
In particular we compute the mean value of the volume, the total mean
curvatures and the Euler characteristic of these intersections when the
totally umbilical hypersurface moves over all the intersecting positions.
Analogous formulas are given for totally umbilical hypersurfaces
contained in totally geodesic planes of H™.

1. Introduction

Consider the space £, of r-dimensional affine subspaces (planes) in n-dimen-
sional euclidean space. Let dL, be a measure in £, invariant under the action
of rigid motions. A classical result in integral geometry states that the integral
of the Euler characteristic of the intersections of r-dimensional planes with a
compact domain @ with smooth boundary S = 0Q is

/ LN QUL = [ ori(a)da

8

where ¢ is a constant, o; stands for the i-th mean curvature of S and dzx is the
volume element of S. If () is convex, this gives the measure of planes intersecting
it.
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In space forms, analogous formulas were obtained in [San76]. More precisely,
let £, be the space of r-dimensional totally geodesic submanifolds of M™(k), the
n-dimensional simply connected manifold of curvature k. Consider a measure
dL, in L, invariant under the action of isometries of M™(k). For a compact
domain ¢ C S™(k) with smooth boundary S = 0Q,

/ x(Lr N Q)dL, = cvol(Q) + Z ¢ sz]"'/ 02i(z)dz

i d 2i<r s

where the constants depend only on the dimensions and vol stands for the
volume.

To go one step further in generalizing these formulas, it is natural to substitute
totally geodesic hypersurfaces by totally umbilic hypersurfaces. In euclidean and
spherical spaces, totally umbilic submanifolds are spheres so one can reduce to
a particular case of kinematic formulas (which measure sets of congruent figures
intersecting a given one).

Nevertheless, in hyperbolic geometry there are many open totally umbilic hy-
persurfaces apart from geodesic hyperplanes. It is well known (cf. [doCar])
that totally umbilical hypersurfaces have constant normal curvature A and they
can be classified into 4 types: geodesic spheres (A < 1), horospheres (A = 1),
equidistants (0 < A < 1), and totally geodesic hyperplanes (A = 0). Geodesic
spheres are sets of points at given distance from a center. Horospheres are
obtained by making the center of a sphere go to infinity. Equidistants are
connected components of tubes about totally geodesic hyperplanes.

This paper generalizes the described integral geometric formulas to totally
umbilical hypersurfaces of hyperbolic space. The role of r-dimensional totally
geodesic submanifolds will be played by umbilical hypersurfaces of (r + 1)-
dimensional totally geodesic submanifolds. For spheres and horospheres, these
formulas were already obtained by E. Gallego, A. M. Naveira, and the anthor
in [GNS]. Here we find new results for the lower values of the normal curvature
A and for higher codimensions.

2. Definitions and invariant measures

The n-dimensional hyperbolic space is any complete simply connected rieman-
nian manifold with constant curvature —1. We will use the hyperboloid model;
let (R"*!,{,)) be the Minkowski space with

(z,9) = —ZoyYo + T1y1 + -+ + TnYn.
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Hyperbolic space is the upper connected component of the two-sheet hyper-
boloid defined by (,), namely

H* = {z € K" |(z,z) = -1, 7o > 0},

with the riemannian metric defined by the restriction of (,). The Levi-Civita
connection V in H" is the orthogonal projection, with respect to (,), onto TH"
of the usual connection in R**t1. As a consequence of this, geodesics in this
model appear as intersections with H" of 2-dimensional linear subspaces.

Let G be the group of isometries of H". It is known that G is the group of
linear endomorphisms of R**! preserving (,) and H". That is,

G={g€Glin+1,R)g'Jg=J, g >0}

where J is a diagonal matrix with —1 in the first position and 1 in the rest. We
will think about the elements g € G as orthonormal frames; the first column g
is a point of H" and the rest (g1,...,gn) form an orthonormal basis of Tg,H".
For each i, consider g;: G = R**! mapping each matrix to its :-th column. The
differential of this map is a 1-form with values in R®*!, and can be expressed
as follows:

1 dgi = ~wlgo +wigi + - +wign
for the invariant 1-forms
w!(X) = (g:;, X’), XeT,G
where X7 denotes the j-th column of X. These differential forms verify
J —

w(’)L :wga wi = —UJ;, 0< haini Sn

Taking exterior derivative in (1) gives the structure equations

(2) dw{=—w?/\w£+2w{‘/\wi, 0<i<j<n.
h#i,j
Recall that a point in a hypersurface is called umbilical when the normal
curvatures in all directions of this point are equal. A hypersurface such that
all the points are umbilical is called totally umbilical. In constant curvature

ambients, the normal curvatures of totally umbilical hypersurfaces are the same
at all the points (cf. [doCar]).
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Definition 2.1: For A > 0, a complete totally umbilical hypersurface with nor-
mal curvature A will be called a A-geodesic hyperplane of H*. Denote £})_,
the set of all A\-geodesic hyperplanes of H".

This definition includes, for A = 1, horospheres, and for A = 0, geodesic
hyperplanes. The case A > 1 consists of spheres of radius arctanh(1/A). For
A < 1, the tube at distance arctanh A around a geodesic hyperplane has two
connected components, each being a A-geodesic hyperplane. It is not difficult
to see that in the hyperboloid model, A-geodesic hyperplanes are intersections
of H* with affine hyperplanes of the type

{z e R™[(z,y) = -}

where (y,y) = 1.

Now we introduce a higher codimension analog of A-geodesic hyperplanes.
Since a geodesic r-plane L, C H" is isometric to H', it makes sense to talk
about, A-geodesic hyperplanes of L.

Definition 2.2: A A-geodesic hyperplane of some geodesic (r + 1)-plane in H"
will be called a A-geodesic r-plane. Define £} to be the set of all such \-
geodesic r-planes. |

Remark: Using the Gauss equation one immediately gets that the A-geodesic
r-planes are riemannian manifolds of constant sectional curvature A% — 1 (for
r > 1). Since they are simply connected, the Cartan theorem assures that they
are isometric to spheres (A > 1), euclidean space (A = 1) or hyperbolic spaces
0<A<y).

Let eg,...,e, be the canonical reference of R**! and consider the (r + 1)-
dimensional geodesic plane L,¢1 = {eg,--..,er+1) NH". Fix L} the A-geodesic
r-plane through eg, contained in L,4; and such that e,4; is normal at ep and
points towards the convexity of L. Let H, be the subgroup of isometries leaving
L) invariant. Now, £} is identified with the homogeneous space G/H;. This
defines a canonical projection m,: G — L?. The following proposition allows us
to find the (unique up to a constant factor) invariant measure in a homogeneous
space.

PROPOSITION 2.1: Let G/H be a homogeneous space of dimension m. Let

n=6"A--AO™
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where 6° are left invariant 1-forms defining the foliation gH (g € G). This form
7 is closed if and only if there exists a measure o in G/H which is invariant by
the action of G. In this case n = n*« for the canonical projection 7: G — G/H.

PROPOSITION 2.2: The space L) admits a measure dL; invariant with respect
to isometries which is defined by

dL*:/r\ wit! — Awly A ( A w{)/\/n\w{;.

h=1 1<i<r+1<5<n k=r+1
Proof: Structure equations (2) show that the differential form is closed. It
remains to prove that wl — Awd, w{ and wf are null on H. Take a curve
9(t) = (go(t),...,g9.(t)) in H. Note g; and ¢; the position and tangent vectors
of g;(t) at t = 0. Clearly, go is tangent to L} so

wh () = wd(§) = (gk, do) = 0.

Considering L} as a hypersurface of L,,; = H', g,41(t) is the unit normal
vector and
)77:+1(g) = (ghagT+1> = <ghyv_(']097"+1> = <gh7)\§0>

since all the directions on L? are principal with normal curvature A. Thus,

(Wit — Awf)(g) is null because

wg () = wi(@) = (gn, o)
Finally, since g; € (e;+2,...,¢€n),

W (9) =(9:,4,)=0 for1<i<r+1<j<n. 1

Remark: Note that

/\( ’7;+1 )‘wo) Awr+1
h=1

corresponds to the measure de\T +]r of A-geodesic hyperplanes of an (r + 1)-
dimensional geodesic plane L, ;. On the other hand,

n

J k

(A w)n A
1<i<r41<j<n k=r+2

corresponds to the measure of (r 4+ 1)-dimensional geodesic planes in H" (cf.
[San76]). Therefore, abusing the notation, we will write

(3) dL} = dLfy 5, A dLry.



276 G. SOLANES Isr. J. Math.

We have paid no attention to the signs because we are not dealing with differ-
ential forms but with measures.

Given polar coordinates (p,u) € R x S®~!, one can consider the geodesic y
going by the origin with tangent u, and the A-geodesic hyperplane such that
4(p) is the exterior normal at the intersection. With these coordinates it can
be seen that

dL} = (cosh p — Asinh p)"~'dpdu

where du stands for the volume element of $71.

3. Volume of intersections with A-geodesic planes

The next proposition generalizes to A-geodesic planes the formula for the mean
volume of intersection with geodesic planes ([San76], p. 245). Here and in the
following, O; will denote the volume of the unit i-dimensional sphere.

PROPOSITION 3.1: Let S? be a g-dimensional compact submanifold in H",
piecewise C', possibly with boundary. Then
00,041

/ vol,_1(L)_, NSdL_, = -voly(S)
o O,

n—1

where vol; denotes the i-dimensional volume.

Proof: Consider the manifold
E(S)={(L}_,,p) €L)_; xS|pe L) NS}

For almost all (L)_,,p), i.e. out of a zero measure subset of E(S), the intersec-
tion L)_, N S is a C! submanifold in a neighborhood of p. Denote dz,_; the
volume element of this submanifold. Now,

J.

n—-1

volg_1(L)_, N S)dL} = / dz,-1 AdL)
E(S)

where dL} denotes the volume element on £_; and also its pull-back to E(S).
Consider now

G(S) = {g € GlgO €S g1,---,9¢-1 € Tgos Gg+15- -« ,gn—l-LTgoS}

and the projection #: G(S) — E(S) which maps the reference g to the A-geodesic
hyperplane through go, tangent to g1,...,9,—1 and with the convexity in the
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side of g,. This way,

g—-1 n—1
m*(dzg—y AdL)_;) = /\ W AWE A /\ (WP = Awl)
h=1 i=1

q—-1 q—-1 n—1 _
= /\ w Awd A /\w{‘/\ /\(w{‘—/\w(’)).
h=1 i=1 i=q
Given g € G(S), take g € G(S) such that

Jo = 9o, - - - 7§q—1 = 4gq-1 and §q (S TgOS.

For every v € T,G(S),

wi(v) = (g5, dgo(v)) =0, ¢<i<n,
wh(v) = (g;,dgo) =0, ¢ <i.

Therefore,

n n

wp = ZQﬂgn)w{) = (Gg,9n)@5 and wf= Z(?i,gq)wé = (Gy» 9¢)W5-

1=q 1=q

Since we are working with measures, no attention must be paid to the sign
changes and we can write

g—1 n-1
(&) 7*(dzgms ALY ) = Gy 00) J\ Wl AT\ wF = [sinbldS™ A de,
h=1 =1

where dS™~! is the volume element in S?! corresponding to the normal vector
of L)_, in z, dz, corresponds to the volume element of S and 6 is the angle
between S and L)_; in z. Integrating both sides of (4) we get

/ dz,_1 AdL)_, :/ mdz, AdL)_; = / | sin §|dS™! - / dz,.
E(S) G(S) sn-1 s

It is not difficult to compute that

/ |sin0|d§"‘1:%. ]
Sn—l Oq

Consider the case of A-geodesic planes with higher codimension.
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PROPOSITION 3.2: Let SY be a ¢-dimensional compact submanifold in H",
piecewise C, possibly with boundary. Then if r + q > n,

On T On—r—10r+q—n
Or N OOOq

/L . Vol 4g—n (L} N S9)dL) = -voly(8S).

r

Proof: Using (3) and the last proposition,

/C X Volyyg—n(L} N S)dL) = /ﬁ . /L volyyg-n(Ly N S)AL 11, dLr 11

A
[r+1)r

= M/ VOl 14g-n(S N Lry1)dLry1.
0r+1+q—n Loy

The formula for the integral of the volume of intersections with geodesic planes
(cf. [San76], p. 245) gives

On e On—r—10r+1+q—n
Ors1--- 01000,

/ VOIT+1+q_n(S N LT+1)dLT+1 = VOlq(S). |
£1‘+1

Note that for A = 0, these results coincide with those in ([San76]) except for the
constant O, _,_1. This is coherent with the fact that, even for A = 0, the space
L) is a fiber bundle of base £, and fiber S*~7~1.

For r + ¢ = n, we have an analog of the Cauchy-Crofton formula

#(L) (1 S9)dL> = On -+ Opert10p—r_1

o 0,0, -volg(S).

In particular, the integral of the number of intersection points of A-geodesic
hyperplanes with a curve of length L is 4L/(O,_1---O2). When X = 1, this
coincides with a result by Santalé for the cases n = 2,3 (cf. [San67], [San68)])
and by Gallego, Naveira and the author for general n (cf. [GNS]).

4. Total mean curvatures of intersections with \-geodesic planes

Apart from the volume, the most natural integral geometric invariants associ-
ated to hypersurfaces are total mean curvatures

M;(S) :=/Saz-(x)d:v

where dz is the volume element of S and o; is the i-th mean curvature of S
at z. Here we deduce reproductive formulas for these invariants analogous to
those given for the volume.
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Let L = Li\L-1 be a A-geodesic hyperplane intersecting transversally a hy-
persurface S in x. This defines, at least locally, a submanifold C = LN S
of codimension 2. The second fundamental forms of these submanifolds are
bilinear symmetric forms given by

hr: (ToL) x (ToL) = (T, L)Y, VxY =VLY +h(X,Y);
hs: (TpS) x (T:S) = (T:8)*, VxY =VSY +hs(X,Y);
ho: (T,C) x (T,C) = (T,0)r, VxY =V§Y +he(X,Y).

Here VM denotes the connection on the submanifold M. One can also consider
the second fundamental form A% of C as a submanifold of L. Clearly,

(5) he(X,Y) = RE(X,Y) + hp(X,Y) = B3 (X,Y) + hs(X,Y).

Let Ng and Ny be the inner unit normal vectors of S and L in a point
r€C=8NL. For X,Y € T,C one has

hs(X,Y) = ps(X,Y)-Ns, hp(X,Y)=pr(X,Y) Ny,

where ug and py are real-valued bilinear forms on T,.S and T, L, respectively.
On the other hand, for some real-valued bilinear form ,u’é on T.C,

h&(X,Y) = ug(X,Y)Ne
where N¢ € T, L is the inner unit normal vector of C.

PRrROPOSITION 4.1: With the above notations,
ps = cosBuy, + sinful

where 6 is the angle between Np and Ng.

Proof: Using (5),
ps(X,Y) = (hs(X,Y), Ns) = (he(X,Y), Ns)
= u6(X,Y)(Nc,Ns) + pr(X,Y)(Ni,Ns),  ®
Since pg = M d we can express p in terms of the restriction of us to T,C,

1739 Ald
6 L=
(©) HC = Ging ~ tand
To avoid confusion, fix the following notation. Given a (real-valued) symmet-
ric bilinear form y in a space of dimension r, we denote

{kiy .. ki)

;)

aj(p) =
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where {k;, -~ ki, } is the j-th elementary symmetric polynomial of the eigen-
values k1,...,k, of u. Recall that

T
det(u+tId) =Y (ki - ki, 17

With this notation the j-th mean curvature 039 of the hypersurface S is 0;(ps).

PROPOSITION 4.2: The mean curvatures o (u5) of C as a hypersurface of L
are given by

k n—{—2\ (n—2 —i
ke cos® 0.
=E n—k 2_)2( )( 1)L -1 )\ Ul(ﬂf?)
v X sin® @

where u3, is the restriction of us to P = T,C.

Proof:

S
L - PP —
pe +tld = nd + (t )Id — (4P + (tsind — Acos)Id).

tan@ sin @

2 /n-2 ;
( . )Un—j—2(ué)t]
—~\
= det(uc + t1d)

det(;zp + (t sinf — Acos 8)1d)
n"" 20

= 1 Z_: (nf2>an _i_o(uP)(tsin@ — X cos @)’

Taking determinants

Ay

n—2 i .
1 n~—2 ) i i o i o
= 7 - ( ; )Un—i—z(ll/}s;)z (]) (—1)* 77X cos* ™7 G sin’ O/

J=0
n—2 n—2 i n—2 o o ]
S (SO (7))o

The following lemma is a generalization of the fact that, for surfaces in R3,
the mean curvature in a point of a surface is the mean value of the normal
curvatures in all the directions by this point.



Vol. 145, 2005 INTEGRAL GEOMETRY OF EQUIDISTANTS 281

LEMMA 4.1: Let S be a hypersurface of some n-dimensional riemannian mani-
fold and let y be the second fundamental form of S in a point x. For every
i-dimensional linear subspace L of T, S, denote p|; the restriction of u to L.
Then, for j <i<n-—1,

[ iule)L = volGln - 1, )
G(T+5.i)

Note that, if another hypersurface N intersects S orthogonally in z in such a
way that T,N NT,S = L, then p|; is the second fundamental form of SN L in
x as a hypersurface of N. This is immediate by Proposition 4.1.

Proof: For the case j = ¢ this is a well-known result (cf. [LaSh, Teu]). For
J < ¢, we can reduce to the preceding case as follows:

| oL

G(T:5,7)

[ (e [ o5l a2
G(T. 5,i) G(T=(SNPL).5)

= vol(G(i, ) / / o)Ll
G(T:=S,5)) J G+ ,i—3)

= vol(G(3, §)) " vol(G(n — j = 1, — 7)) /G 1, O

=vol(G(4,5)) ' vol(G(n — 5 — 1,i — 7)) vol(G(n — 1, i))o; (). 1

Given a hypersurface S C H*, for almost every A-geodesic hyperplane L} _,,
the intersection L)_; NS is a smooth hypersurface of L}_,. In this case, it
makes sense to consider M;(L}_; N S), the total mean curvatures of L)_, N S

as a hypersurface of L) _,.

PROPOSITION 4.3: Let S be a hypersurface of H",

/2
" My(Ly_yNS)Ly_; = > A M u(S),
n-1 {=0

where val-2 )
n— -2\ (n~
( ia )(j—2l) On—20n-j42100

("]_2) On-;j-109

Proof: Denote C = L)_; N S. Using (4)

/ / ofdadL)_) = / / sin o dS™ da.
£2_,Je S Jgn-1

noo_
G5 =
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By Proposition 4.2, if u3, is the restriction of pg to P = T,C,

(n_. 2) / sin 6o 4§}
J §n-1

J n—1— n -2 L sin @
1Yyt J—i n—1
Z (n j- )( ; )( 1)7 7'\ /Sn_1 sm’BCOS 001(;1 ydsS™.

=0

Taking ‘polar coordinates’ in S™~!, the latter integrals are

/ / sm9
§n— -2

Using Lemma 4.1 gives the sought formula. The constants are easily obtained.
|

cosJ {00, (u3) sin™ 2 6dod P

:/ sin® 771 § cos’ " 6d0 oi(up)dP.
0 §n-2

COROLLARY 4.1: Forj <r -1,
(5/2]

/ ML} NSYALY = > e A M_(S)
1=0
where irai
e, = ( r]] 1 )(] 2[) On 2" On—r—lon—j+21
L, (1‘;1) O — 'Olor—-j02l .

Remark: For j = 0 we recover the case ¢ = n — 1 of Proposition 3.2.

Proof: Formula (3) gives

/ M;(L) N S)dL) = / / M;(L} N S)dLML, 41
1 +1

[r+l]r
which, by the last proposition, is equal to

(5/2]
/ ( Z CZ‘+1/\2le_21(S N LT+1)> dLr+1'
Lrg1

Finally, the reproducibility formulas of M; for intersections with geodesic planes
that appear in ([San76], p. 248) give

On 2° n r— lon J+2l
M;_3(S0 Lyyq)dL - (S). B
/E MO L)Ly = Ty (5)
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5. Measure of A-geodesic planes intersecting a domain

In the following we express the integral of the Euler characteristic of the inter-
section of A-geodesic planes with a domain of H" in terms of the total mean
curvatures of its boundary.

THEOREM 1: Let Q C H* be a compact domain with smooth boundary. For r
even

Opy Opr_
/p X(@NINALY = (\ — 1A= 2=V (Q)

r/2 r/2 r—1 2cn - 2
+ ' 1—7,2i—1,r /\2 -1 o ‘/\2i—2j>M . {80).

jz:':’ (; (21 - 1) O2i—10r-2i( ) 5-1(0Q)

For r odd
[ x@nzdaz =
c
(r-=1)/2 ,(r-1)/2 n ,
— 1 2c._A i r—2i—1 ., )

> ( > (’" . )——— DET_(Z2 -1y ,\2"2”>M2j(8Q).
prd et 2i ) 02,0r-2i1

Proof: For every L intersecting Q, the Gauss-Bonnet formula in space forms
of sectional curvature (A\? — 1) states (cf. [San76)), for r even,

Zx@nL) = - ) Pv@nL))
r/2
+Z r—1 _L_(A2 _ 1)(T“2i)/2M2-_1(6Q N L")'
—\2i-1 02i-10,_2; ’ e

and for r odd,

0 ol o) .
7x(Q N L:‘) = Z ( 9 ) I—OL;—I—(/\2 — 1)(T—21—1)/2M2i(aQ n Li\)
=0 iUr—2i—

Integrating with respect to L), in the even case

S [ x@nzyar =2 -1y” [ v@nraz:
£} £}

r/2
r—1 07‘ 2 ( _2,)/2/ N N
S (A =) My
2 (2i oY |, Mo 0QLNALY,

i=1
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and by Corollary 4.1 and Proposition 3.2,
O, Marr — (v2 _ 1yr/29n=1-On_r_y
5 | x@nmn = o2 -yl ()

Or_1--0g
ke r—1 ) =1
- T 2 _ q\(r—2i)/2 n 25
* ; (2i - 1) O2i-10,—2; ¥ =D (g ai-1r) M21—21—1(3Q))

and reordering the sums we get the sought formula. In the odd case one proceeds
analogously. ]

For A = 1 and r = n — 1 we get the integral of the Euler characteristic of
intersections with horospheres (as in [San67], [San68] and [GNS)).

Remark: These results are of special interest in the case of A-convex domains
(cf. [GaRe]). A domain Q is called A-conver if for every A-geodesic curve L7,
the intersection L} N Q is connected. In this case L} N Q is contractible for any
L2, so the last formulas give the measure of A-geodesic r-planes that intersect
Q. For instance, the measure of A-planes in H® intersecting a A-convex domain
is

[ am=2m00)-0-¥VQ.
L3NQ#0
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